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HEAT TRANSFER IN ANNULAR PASSAGES- 

HYDRODYNAMICALLY DEVELOPED TURBULENT FLOW 

WITH ARBITRARILY PRESCRrBED HEAT FLUX 

W. M. KAYSt and E. Y. LEUNG: 

(Received 15 December 1962) 

Abstract-The problem of turbulent flow heat transfer in a concentric circular tube annulus with fully 
developed velocity profile and constant heat rate per unit of length is considered. Experimentally 
obtained solutions are presented for the thermal entry length for a fluid with Pr = 0.7. Asymptotic 
solutions (fully developed velocity and tempe~ture profiles) are developed for a wide range of radius 
ratio, Reynolds number, and Prandtl number. The solutions are based on empirical velocity and 
eddy diffusivity profiles, and the validity of the solutions is demonstrated experimentally for Pr = 0.7. 
A superposition method is demonstrated for solving the problem of asymmetric heating from the two 
surfaces of an annulus, and experimental data on asymmetric heating are presented which are in 
excellent agreement with the analysis. This paper is the third in a series (1, 2) culminating a four year 
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Prandtl number, pep/k; 
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Subscripts 
e, 
J, 

entrance of tube ; 
either the inner or outer surface of the 
annulus flow passage ; 
inner surface ; 
outer surface ; 
inner surface conditions, when inner 
surface alone is heated; 
outer surface conditions, when outer 
surface alone is heated ; 
inner surface conditions when outer 
surface alone is heated ; 
outer surface conditions when inner 
surface alone is heated; 
mixed mean conditions when inner 
surface alone is heated ; 
mixed mean conditions when uuter 
surface alone is heated. 

INTRODl JCTION AND OBJEXTIVES 

TEW PAPER has been prepared as part of a series 
[I, 2] on steady heat convection in a circular 
tube annular passage. In the first paper [I], it is 
shown how the general problem of arbitrarily 
specified heat flux and/or surface temperatures 
on the two surfaces of an annulus can be solved 
by superposition employing one or more 
of four fundamenttal solutions to the energy 
equation. The second paper [2] contains a 
complete development of the four fundamental 
solutions for hydrodynamically developed 
~a~~~~~ flow in a concentric annulus. The present 
paper is concerned with the same problem, but 
for ~U~~~~~~~ flow. 

The turbulent Bow problem is two orders of 
magnitude more complex than its laminar flow 
counterpart because Reynolds number and 
Prandtl number become parameters, and it is 
beset with further difficulties because of our 
incomplete knowledge of the details of the 
turbulent beat transport mechanism. Thus, this 
paper will be less complete than the previous 
one, and, in fact, of the four fundamental 
solutions, o&y the FundamentaI Solutions of the 
Second Kind are considered, and these only in 
incomplete form. Nevertheless, sufficient data, 
both analytic and experimental, are presented to 
solve a large variety of annulus heat convection 
problems in which heat flux on the surfaces is 
spe&ed. 

For four annulus radius ratios. 0.192, 0*255, 
O-376, and 0.500, the Fundamental Solutions 
of the Second Kind are developed completefy 
for air (fr -I- 0.7) entirely from experimental 
data. An asymptotic solution is then developed 
analytically (velocity and temperature profiles 
fully developed) for Prandtl number from 0 to 
103, Reynolds number from IO4 to 10”. and 
radius ratio from 0-i to 14. This solution is 
shown to be in excelfent agreement with experi- 
ment for Pr 7.:: 0.7. Finally, experimental data 
are presented for several cases of asymmetric 
heating, and these are shown to be in excellent 
agreement with predictions from the funda- 
mental solutions. 

ENERGY ~~~~R~~TiA~ EQUATKM 
AND THE ~UNDA~NTA~ SOLUTIONS 

OF THE SECOND KIND 

Under conditions of steady hydrodynamically 
fully developed turbulent flow with constant 
fluid properties, negligible axial conduction, and 
axially symmetric heating, the energy dif- 
ferential equation may be written as follows if 
it is assumed that an eddy dii%sivity can be 
rationally defined : 

At the axial distance _Y -~= 0 let the fluid and 
both of the wall surfaces be at a uniform tem- 
perature fe. At this point, let the heat flux on 
either the core wall or the outer wall, j, be 
increased stepwise to a constant qj’ while the 
opposite wall is insulated. Let a non-dimen- 
sional fluid temperature and surface heat 
flux be defined as, 

Then the boundary condjt~ons become, 

(j w c 0, x ::I 0. (3) 

The nomenclature employed here is identical 
with that of reference Cl]. Since we deal here with 
_~~___ -- I___--- - 

f See [I]> equation fl), far a more general form of fl) 
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solutions of the Second Kind, the superscript 
(2) will henceforth be omitted. 

The problem then reduces to 

(1) seeking the fundamental solutions, B&), 
tL&c), and &&), for the boundary con- 
ditions, @tt = 1, and Doi = 0, 

(2) seeking the fundamental solutions, 8,,(x), 
B&X), and 8,&x), for the boundary con- 
ditions, CD,,,, = 1, and @tzo = 0. 

With these fundamental solutions the inner 
and outer surface temperatures and the mixed 
mean fluid temperature can be calculated for any 
arbitrarily specified axial flux distribution on 
either surface by taking advantage of the 
linearity of (1) and using superposition. For 
hydrodynamically fully developed axi-symmetric 
flow the fundamental solutions are only func- 
tions of the distance from the discontinuity in the 
boundary condition. Then from the general 
solution of the Second Kind, Table 1, reference 
[I], it follows that, 

h(X) = 4 s’-’ eittx - 6) dq1’(5) 
P-Q 

Dh E=z 

+ 7 s _ ho(x - 6) dqi’(O + te, 
t-0 

to(X) = $ 
s 

E:r eoz(x - f) dq;‘([) 
P-0 

+ + 
s 

f:zeoo(x - 0 dq,“(5) + te. 
f-0 

(4) 

(5) 

(6) 

For the more restricted case of a constant 
heat flux, qi’, on the inner wall and a constant 
heat flux, qi’, on the outer wall, (4), (5), and (6) 
reduce to the following: 

f{(x) = $ ]ezr(x) ql’ + et,(x) 41’1 + tc (7) 

to(x) = 2 P&) &’ + &A) &I + te (8) 

th) = z p,,(x) 4;’ + 444 q;‘i + te. (9) 

By subtraction the entrance temperature can 
be eliminated and the temperature differences 
between the fluid mixed mean and the two 
surfaces can be calculated. 

tg(x) - tm(x) = 8 
t, 

{[h(x) - 4d4l qr 

+ [et,(x) - em,(x)1 d7. (10) 

tocx) - tm(x) = ? wdx) - ema 4;’ 

+ bdx) - hdx)i 42. (11) 

For the case where q:’ = 0, equation (10) 
becomes, 

h(x) - h(x) = $ p,,(x) - bd~)i 4;‘. 

For convenience a Nusselt number can be 
defined for the inner surface: 

Nua(x) = 3 
I, 

q4 
k b(x) - bn(x)l' 

(12) 

Then if the inner surface alone is heated, Nur 
becomes Nuat according to the subscript con- 
vention, and it follows that, 

1 
(13) 

similarly, 

1 
NUOO(x) = e,,(x) - e,,(x)* (14) 

For the more general case of both surfaces 
heated (but at independently specified heat 
fluxes) the Nusselt number defined by equation 
(12) is still useful and may be evaluated by 
substituting equation (10) into (12). Making use 
of (13) and defining influence coefficients, 
0: and 8,*, the following simple expressions 
for the Nusselt numbers on the two surfaces for 
asymmetric heating are obtained : 

Nur(x) = 
Nuzr(x) 

i - e:(x) -q;‘jq;’ (15) 

Nuo(x) = 
Nu,o(x) 

i - e:(x) - q;‘/q;’ (16) 
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where, 

It should be emphasized that to solve problems 
where the heat flux on the two surfaces caries 
ax-iai@ equations (41, (5), and (6) must be 
employed. If the heat flux on the two surfaces 
is constant (though different) equations (7)-( 16) 
are all applicable in both the thermal entry 
region and the fully developed region far 
downstream. In the sections to follow, the various 
B(X) are presented for a variety of radius ratios 
and Reynolds numbers but only for a fluid with 
Fr = 0.7. Thus, it is only for Pr =-c-z O-7 that ther- 
mal entry length and axially varying heat flux 
problems can be solved with the data given here- 
in. However, for the thermally fully developed 
region (x --.- ;jc) NUG, Nu,,, P:, and PC are pre- 
sented for all Prandtl numbers from 0 to 1000. 
For most engineering applications. with the 
exception of the low Prandtl number liquid 
metal region. thermal entry length and axial 
heat flux variation effects are not particularly 
significant, whereas asymmetric heating effects 
(qi’/qi-‘) may be quite significant. Thus the 
solutions for thermally fully developed flow 
are by no means of restricted usefulness but 
rather form the more important part of this 
paper. For ~~~?li~zu~ flow. like low Prandtl 
number turbulent flow, the thermal entry region 
solutions are of extreme importance and are 
given completely in [2]. 

Note that q:’ and (r: are defined as positive 
into the fluid. The solutions are equally applic- 
able whether the heat flux ratio is positive or 
negative. It is quite possible to have a negative 
Nusselt number under asymme~~c heating 
conditions, and this does not destroy either the 
validity or the usefulness of the Nusselt number. 

EXPERIMENTAL APPARATUS 

The experimental apparatus employed to 
establish the Fundamental Solutions of the 
Second Kind for I+ =-- 0.7 is described in com- 
plete detail in [3], and somewhat less com- 
pletely in [ I]. 

DATA REDtKYl?ION 

To determine the fundamental solutions from 
the experimental measurements, equations (10) 
and (1 I) were used directly. Series of tests were 
run at various Reynolds numbers with the inner 
tube heated, and then the outer tube heated. 
The mean fluid temperature at each point along 
the tube was evaluated by integration of the heat 
flux up to that point and making an energy 
balance. Where the outer tube was heated the 
heat flux was first corrected by deducting the 
calibrated heat leak. In all of the tests there MS 
some radiation between the surfaces, and the 
radiation rate was estimated assuming an 
emissivity for lnconel of 0.35. Because of the 
radiation, no tests were actually run with heat 
convection from one surface only, although the 
heat radiated across the passage and conducted 
into the air from the opposite side was small 
relative to that directly conducted to the air 
from the heated surface. A method \~a> 
developed, involving some minor approxima- 
tions, so that all four of the dimensionless 
temperature differences in ( 10) and ( 11) could bc 
evaluated from the two sets of tests, even though 
the heating was slightly asymmetric. 

All fluid properties were evaluated at local 
mixed mean temperature. To avoid difficulties 
with the influence of temperature dependent 
fluid properties the heat fluxes were adjusted so 
that local temperature dif%rences were nmx 
more than about 50°F. Nevertheless, a correction 
taking into cons~deratioll this etrect was made by 
assuming that the dirnensj~)nlcss temperature 
difference\ vary as rhc absolute temperature 
ratio, su&ce to mean fluld, to the 0.575 power, 
since this is the effect that may be deduced from 
the large temperature difference circular tube 
data of Humble et ul. [4]. The correction is thu, 
a maximum of about 5 per cent. 

‘The heated length-to-l~ydraulic-dianleter ratio 
of the tubes varied from 23 for the 0~ 192 radius 
ratio tube to 73 for the 0.500 radius ratio tube. 
Thus, for none of the tubes \vas it possible to 
measure directly the asymptotic temperature 
differences (or Nusselt numbers) since some 
remnant of the thermal entry length would still 
be in evidence even at these lengths. To determine 
the asymptotic solutions. an extrapolation ~1s 

employed based on the reasonable assumption 



HEAT TRANSFER IN ANNULAR PASSAGES 541 

that the tube-length dependence of the solution 
may be approximated by the first term of the 
exact infinite series solution, which is a simple 
exponential. 8ii - 8%~ and Boo - 0,, were 
plotted as functions of x, a smooth curve was 
drawn through the data points, and then the 
last 5 per cent of the rise of the curve was 
employed as the basis for the extrapolation. The 
data along a half to three-quarters of the heated 
length of the tube was generally in this 5 per cent 
region, and the resulting extrapolation yielded 
an asymptotic solution that typically differed 
from the last data point by 0.5 to 4-O per cent. 

The temperature differences, O,, - l$, and 
e - e,i, are much more difficult to establish 
experimentally because they are very small 
relative to the other differences and are very 
sensitive to small experimental uncertainties. 
This is especially true of 8,t where a small 
amount of heat leak has a large effect. By the 
same token, these differences are much less 
important in application of the results. In the 
data presented, these differences are based 
partially on the experimental measurements and 
partially on the asymptotic behavior predicted 
in the analytical section of this paper. 

d-05 

0.04 

A complete analysis of the experimental un- 
certainty is presented in [3], and the conclusions 
only will be given here. The expected uncertainty 
in the dimensionless mean temperature dif- 
ferences (Nusselt number inverses) for the case of 
the inner tube alone heated is f3.2 per cent. 
For the outer tube alone heated, the estimated 
uncertainty is f2.6 per cent. The uncertainty in 
the Reynolds number determination is &2.0 
per cent. 

The best verification of the low uncertainty 
estimates lies in the excellent correlation between 
analysis and experiment obtained in the laminar 
flow work reported by Lundberg, McCuen and 
Reynolds [2] using the same apparatus and the 
same procedures. Virtually all of the sources of 
error are greatly magnified at the very low flow 
rates employed in the laminar flow experiments. 

EXPERIMENTALLY DETERMINED FUNDA- 

MENTAL SOLUTIONS OF THE SECOND KIND 

The fundamental solutions deduced from the 
experimental measurements are presented in 
Figs. 1,2,3, and 4. Each figure covers one radius 
ratio and five different turbulent flow Reynolds 
numbers. All of the fundamental solutions of the 

x* 2” 
FIG. 1. Fundamental solutions of the second kind for r* = 0.192 and Pr = 0.70. 
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FIG. 2. Fundamental solutions of the second kind for r* <= 0.255 and Pr - 0.70. 
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FIG. 3. Fundamen~l solutions of the set :ond kind for r* = 0.376 and Pr -- 0.70. 
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FIG. 4. Fundamental solutions of the set :ond ki ind for r* = 0.500 and Pr = 0.70. 

second kind are plotted with the exception of 
Ci and S,,,,. These latter can be established 
by simple energy balances and expressed in 
algebraic form. 

0 
n&l 

= 4r* WDh) 
RePr (1 + r*) 

em0 = 
4 (x/Dh) 

Re Pr (1 + u*) (20) 

These solutions can now be used directly in 
equations (4), (5), and (6) for calculation of any 
arbitrary heat flux distribution on the two sur- 
faces of the annulus, as well as in the more 
restricted equations (7)-(18). 

The solutions are, of course, limited to a fluid 
with Pr = O-7 and are restricted to the par- 
ticular radius ratios and Reynolds numbers of 
the tests. However, cross-plotting and inter- 
polation could be employed to increase the 
generality of the results. 

EXPERIMENTAL RESULTS FOR FULLY 

DEVELOPED CONSTANT HEAT RATE 

In a previous section the method of extra- 
polation of the thermal entry length data to 

0 

0 20 40 60 00 

X* 

obtain the asymptotic solutions is described. 
These results have been reduced to Nusselt 
numbers and plotted in Figs. 5 to 10. 

The results for the circular tube plotted in 
Fig. 5 were obtained to provide another check 
on the experimental apparatus, and alsc, of 
course, because the circular tube is one of the 
limiting cases of the annulus. For comparison 
purposes, the analytic solution of Sparrow, 
Hallman, and Siegel [5] is plotted, as well as the 
solution described in the next section of this 
paper, and the following empirical equation 
which has been used by the authors to correlate 
a large amount of experimental data for the 
constant heat rate asymptotic Nusselt number 
for fluids in the gas Prandtl number range. 

Nu = 0.022 Pr0.5 ReO”-‘. (21) 

The test results are seen to agree very well with 
both of the analytic solutions as well as with the 
empirical equation. 

Figs. 6-9 show the asymptotic Nusselt num- 
bers for four radius ratios of annulus, together 
with the analytic results discussed in the next 
section. 

On Fig. 10, the results are plotted as a function 
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Frc;. 5. Fully developed Nusselt numbers for Aow in a 
circular tube, Fr = 0.70, constant heat rate. 

Re 

FIG. 6. Fully developed Nusselt numbers for 
y* = 0.500, Pr = 0.70. 
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FIG. 7. Fully developed Nusselt numbers for 
r* = 0.376, Pr = 0.70. 
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FIG. 8. Fully developed Nusselt numbers for 
r* = 0*255 * Pr = 0.70. 
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FIG. 9. Fully developed Nusselt numbers for 
Y* -= 0.192, Pr -z 0.70. 

FIG. 10. Effect of radius ratio on fully developed 
Nusselt muhers, Re = 40 000, Pr = 0.70, 
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of radius ratio for one particular Reynolds 
number, 40 000, so that the effect of radius 
ratio can be clearly seen. Also included is the 
inner surface Nusselt number from the rather 
limited amount of data obtained at r* = 0.029. 

ANALYSIS FOR FULLY DEVELOPED CONSTANT 
HEAT RATE 

The large number of variables involved in the 
turbulent flow annulus heat transfer problem 
makes it rather impracticable to attempt to 
obtain a complete solution experimentally. 
Semi-empirical analytic solutions have been 
obtained for turbulent flow in a circular tube 
that are in very good agreement with experiment, 
and it would be very useful if the methods em- 
ployed could be successfully extended to the 
annulus. In principle, the thermal entry length 
solutions can be obtained just as readily as the 
asymptotic solutions, but the computation 
problem becomes enormous, and only the 
asymptotic solutions are considered here. 

Since what is believed to be good experimental 
data are now available for a fluid with Pr = O-7, 
the major purpose served by the analysis will be 
to extend the results to other Prandtl numbers. A 
fortunate feature of this problem is the fact 
that at very low Prandtl numbers, the problem 
approaches one of pure molecular conduction 
about which there is little uncertainty, while at 
very high Prandtl numbers, the heat-transfer 
resistance is concentrated so close to the wall 
surfaces that the geometry becomes of minor 
importance, and it is only necessary that the 
heat-transfer behavior of the sublayers be 
properly handled. The methods that have been 
successful for flow in a circular tube at high 
Prandtl numbers should be equally applicable 
here. Thus it is that the assumptions that must 
be made in the annulus heat-transfer analysis 
are most critical in the region near Pr = 1.00, 
and it is, of course, in this region where we do 
have good experimental data to fall back upon. 
The analysis can be looked upon as an extra- 
polation of the experimental data, but a rather 
unique extrapolation in that the assumptions on 
which it is based become of decreasing conse- 
quence the farther the extrapolation is carried. 

One of the major difficulties in the analysis of 
turbulent flow in a circular tube annulus is the 

determination of the ratio of the shear stresses 
on the two surfaces, and the related problem 
of determining the radius of maximum velocity, 
which is assumed to be the point of zero shear 
stress. If the radius of zero shear (maximum 
velocity) is designated as s, the relation between 
s and the surface stress ratio can be readily 
shown for fully developed flow to be, 

7* = 2 _ (r2 - $7 (1 - Sa) r* 
7i - (s2) = (,f2 _ r*2) ’ 

where S = s/r,. (22) 

For laminar flow S is a unique function of r* 
that can be easily evaluated, but there is no 
direct way to determine this function for 
turbulent flow, short of actually measuring it. 
Since a heat and momentum analogy method is 
to be used to calculate heat transfer, the shear 
stress distribution must be known. Note that 
this difficulty does not arise in the analysis of 
fully developed flow in a circular tube or be- 
tween parallel planes (the two limiting cases of 
the annulus) because symmetry imposes a linear 
shear stress distribution for both laminar and 
turbulent flow. 

A number of investigators have reported 
turbulent velocity profile measurements in cir- 
cular tube annuli, and these provide probably 
the best source of data on shear-stress ratio. 
It is extremely difficult to measure shear stress 
directly, but the radius of maximum velocity can 
be scaled from velocity profile measurements, 
although because of the rather flat profile it is 
difficult to get high precision. On Fig. 11 the 
radius of maximum velocity, plotted in the form 
s* = (j - r*)/(l - S) vs. r*, is given from the 
authors’ interpretation of profiles presented by 
Lorenz [6], Rothfus, Monrad, and Seneca1 
[7], Knudsen and Katz [8], Owens [9], and 
Barrow [IO]. Also shown on this plot is the 
laminar flow solution, and the result if the shear 
stresses on both surfaces were equal. The 
Reynolds numbers for these data vary from about 
10 000 to over 700 000. Some of the investigators, 
notably Rothfus et al. and Barrow, conclude 
that the turbulent shear stress ratio is essentially 
the same as for laminar flow, but these results 
suggest a somewhat smaller ratio. There may 
well be a Reynolds number effect, in which case 
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FIG. I I. Experimental data on the point of maximum velocity for turbulent flow in an annulus. 

the fact that both the Rothfus and Barrow data 
are for moderately low Reynolds numbers 
may be significant. Of possibly greater signify- 
cance is the fact that heat-transfer predictions 
based on the laminar shear stress ratio tend to 
yield Nusselt numbers on the inner surface that 
are considerably higher than measured, and it 
was only by using a lower curve that the authors 
were able to obtain predicted Nusselt numbers 
in good agreement with the heat-transfer 
measurements. The proposed curve, 

S* ._ ,,*)o.sw (231 
was drawn so as to heavily weight the point at 
r* = 0.052 because this is believed to be the 
most accurate of all those plotted. Thus for the 
present analysis, equations (22) and (23) were 
used for the shear stress ratio, which then 
establishes the complete shear stress dis~rib~Ition. 

Velocity and eddy diffusivity profile equations 
were developed by first breaking the flow area 
into four sections: (1) a sublayer near the inner 
surface; (2) a sublayer near the outer surface: 
(3) a fully turbulent region from the inner sub- 
layer to the point of maximum velocity ; (4) a 
fully turbulent region from the outer sublayer 
to the point of maximum velocity. The equations 
employed in these various regions will first be 
given, and then their origins will be discussed. 

For both of the sublayers. the momentum 
eddy difksivity was evaluated from, 

The velocity profile in the sublayers was 
obtained by integration of the defining equation 
for total apparent shear stress, assuming the 
shear stress constant at the wall value, and using 
equation (24) for the d~ffusi~ity. This result can- 
not be put in a closed form equation. The sub- 
layers were considered to extend to T- z-1 42, 
since it is at this point at which the sublayer 
velocity matches the fully turbulent region 
velocity. 

The rnoT~ieIlturn eddy diffusivlty equation for 
the region between the outer sublayer and the 
point of maximum velocity ih. 

[I -t- 0% (?]O 131. (25) 

The corresponding equation for the region from 
the point of maximum velocity to the inner 
surface sublayer is, 

The velocity equation used for the outer 
turbulent region is, 
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The corresponding 
inner region is, 

HEAT TRANSFER IN 

velocity equation for the 

1 
et;” = G In 7Q + Cg (28) 

where kg and Cf are variable coefficients chosen 
so that at all times (1) the velocity at the maxi- 
mum velocity point matches the velocity equa- 
tion from the outer surface, and (2) the velocity 
matches the sublayer velocity at v;” = 42. 

The sublayer diffusivity equation is essentially 
the equation proposed by Deissler [I l] with a 
slightly modified independent variable. Deissler 
demonstrated that this equation works very well 
for heat-transfer calculations to high Prandtl 
number for circular tubes and there is no 
reason to believe that the sublayers on the 
annulus surfaces, should behave any dif- 
ferently than in a circular tube. 

The turbulent region diffusivity equations, 
(25) and (26), are essentially modifications of 
the diffusivity expression proposed by Reichardt 
[12]. The momentum eddy diffusivity has been 
measured from a number of the velocity profiles 
presented in the above cited references, and two 
examples are shown in Figs. 12 and 13. The 
modifications to Reichardt’s equation are purely 
empirical and were made to obtain a fit to the 

6 6 4 2 

r, cm 
I%. 12. ~x~rimeRta1 data on momentum eddy 

diffusivity in an annulus. 

60 

% 

tt 
40 

0 
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FIG. 13. Expetimental data on momentum eddy 
diffusivity in an annulus. 

measured diffusivities, as shown in the figures. 
As either of the surfaces are approached both 
equations approach 0.4~’ which is the form 
predicted by mixing length theory and is con- 
sistent with ah known measurements near a walk 
Thus the modifications are primarily in the 
central region of the passage. For a sym- 
metrically heated tube, accurate data on the 
diffusivity in the central region is not par- 
ticularly important, but for the asymmetric 
type of heating considered here it is definitely 
necessary to have reasonably accurate data. The 
rather complex nature of the equations arises 
from the necessity of a pair of equations that 
will be adequate for all radius ratios, including 
the limiting cases of the circular tube and flow 
between parallel planes. 

The two velocity profile equations, (27) and 
(29, are not derivable from the diffusivity 
equations, but do fit the available experimental 
data relatively well, as can be seen in Figs. 14 
and 15. The inconsistency between the velocity 
and di~us~vity equations is not important 
because nowhere in the computing procedure 
were the velocity equations differentiated. The 
velocity profiles could have been derived from 
the diffusivity equations and the shear stress 
distribution, but a considerable saving in com- 
putation time was effected by employing the 



550 W. M. KAYS and E. Y. LEUNG 

FIG. 14. Experimental veIocity profiles in an annulus in the region between the 
point of maximum velocity and the outer surface sublayer, 

FIG. 15. Experimental velocity protiles in an annulus in the region between the 
inner surface sublayer and the point of maximum velocity. 

simpler velocity equations. Equation (27) is 
recognized as the simple Nikuradse equation 
with the Reichardt middle law modification, 
Equation (28) is simply an empirical modifica- 
tion to fit the experimental data. 

The essence of the heat and mome~tu~l 
analogy method of calculation lies in the assump- 
tion of a definite relationship between the thermal 
and momentum eddy diffusivities. The procedure 

used here was a modi~~ation of the procedure 
employed by Sleicher and Tribus [I 31. The 
relationship calculated by Jenkins [14] was 
used, but the ratio of thermal to momentum 
eddy d~ffusivity was n~~tj~lied by a ~onsta!lt 
factor 1.20 so as to bring the calculated heat- 
transfer results for air in a circular tube into line 
with the experiments. However, in the sub- 
layers it was assumed that equation (24) could 
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be used directly for thermal eddy diffusivity, i.e. 
that the diffusivities were always equal. The basis 
for this is that Deissler [Ill employed equation 
(24) for a circular tube and obtained excellent 
correlation with experiments up to very high 
Prandtl numbers. At high Prandtl numbers the 
turbulent heat transfer behavior is very sensitive 
to the sublayer diffusivity, and rather insensitive 
to the diffusivity in the central region, whereas 
the reverse is true at low Prandtl number. It 
appears that for present purposes equation (24) 
can be looked upon as an expression for the 
thermal eddy diffusivity rather than the momen- 
tum eddy diffusivity. 

The problem now is simply one of integrating 
equation (1) for the indicated boundary con- 
ditions employing the velocity and thermal 
eddy diffusivity data discussed above. Calcula- 
tions were carried out only for the asymptotic 
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solution, e.g. for points well downstream of 
the beginning of heating where a fully developed 
temperature profile is obtained. For constant 
heat rate per unit of tube length this can be 
accomplished by setting the derivative on the 
right-hand side of (1) equal to the mixed mean 
temperature gradient, which is a constant. 
The equation becomes an ordinary differential 
equation which can be readily solved numerically. 

The calculations were carried out on a 
Burroughs 220 digital computer, and the results 
are presented in Table 1. The radius ratios 
considered include the limiting cases of the 
circular tube, r* = 0.00, and flow between 
parallel planes, I * = 1.00, as well as the annulus 
radius ratios O-10, O-20, 0.50, and O-80. The 
Prandtl number was varied from 0.0 to 1000, and 
the Reynolds number from lo4 to 106. Thus, a 
very extensive range of variables is covered with 

I III I 

Re 
FIG. 16. Computed inner surface Nusselt numbers for 
fully developed velocity and temperature profiles for 

constant heat rate in an annulus with r* = 0.20. 



W. M. KAYS and E. Y. LEUNG 

_ 
r* = 1.00, Parallel plates 

-._ R.2 
._ 10' 3 10' 

~~~ 
5.x0 0 ,46X 
623 0.460 
ti.hL 0~422 

21-P (I.333 
(II 2 0.255 

7X0 0.157 
1030 (1. IQ 
ii40 0 Illi 
'700 ii ON4 
iO80 ii 040 
x000 II 014 

00~001 5.70 5.70 0.428 0,428 5.78 5.78 o-445 0.441 

0.003 5.70 0,428 5-80 0.445 
O-01 5-80 0.428 5 Y2 0.41 
0.03 6.10 0.4211 h~"O 0-42X 
0.5 22.5 0,256 47.8 0,223 
0.7 27-X O-220 hl.2 0.1'): 
I-O 35.0 0. IX?. 7h x 0. I63 
3 60.8 O-095 142 O-O')2 
IO 101 o-045 241 0~04' 
30 147 0.021 367 0.022 

100 210 o-009 514 WIO', 
1000 3YO 0.002 '197 1~~002 

5.80 0.45h 
5.80 0456 
5.90 0 450 
6.70 0.440 
II-O 0~390 

I 20 o- lY3 
IF' O-170 
1'17 I, IJX 
3X0 0 OX') 
(>XO 0 04s 
1030 0.022 
IS20 0~010 
1x80 0 OO? 

S-80 0-460 
5.88 0.46O 
6.32 0.450 
Y.80 0.407 

230 0.330 
2%1 0 174 
37x 0 I 5h 
4X6 0 13X 
966 0~087 
I7hO o-fM.' 
1720 0~023 
4030 0 010 
7h.50 won2 

! 2 000 0.0 I 1 
2 1 000 0 001 

IO 

h’u,. ,/ ;:. 

3 IO,’ 

.‘k u ,, ,, Cl., 

5.80 0.407 
5-W 0406 
h.35 0407 
Y.95 0.361 
23.2 0~29n 

202 0.153 
37X 0.136 
483 0.120 
YOO 0.07h 
1740 0~040 
2720 0 021 
4000 MlO'J 
77x 0.002 

;.001 5.65 0.379 5 70 O-386 
56s 0.379 5-70 W38h 

0.003 5.65 0 379 5 70 0.3X6 
0.01 575 0 381 5-85 0 iXh 
0.03 610 0-78X (,~YO 0-1X,, 
0.5 22.4 O-225 4x.0 O.iVl 
(I-7 28-O ClY2 hl-0 0 Ihh 
I-0 34.8 0. ICY 7h 5 0.141 
3 (11-3 O-083 I42 0,070 

IO 100 0.039 241 0 03') 

5 75 0 398 
5 7? 0-39X 
5 X4 W3Y7 
0.77 0.790 
Il.1 0 33'1 

I21 0 IOU 
15h 0 I50 
lY7 0 12') 
3X2 11.078 
670 n-039 
1040 O~OZO 
I500 O-00’) 
2870 0 002 

30 I& o.oi9 365 o-o IO 
100 209 0.00X 533 0 mx 

1000 385 0002 1000 0.002 

10, 

2’u,, ‘1 / 

3 IO 

r'+ II, ‘ 0 i 

5.95 0.525 
6.00 0.518 
6.40 0.504 

in 0 0.452 
23 0 0.357 

2Y6 O.JY3 
3x4 0.172 
492 0.154 
Y73 O.OYh 
1790 0.051 
2750 0029 
4050 o-011 
7700 O.OO? 

IO” 

,Ali,. 8, 

5 97 0 52X 
6 33 0-516 
X HO 0468 

11.7 0 382 
h I .o 0 270 

x00 0 174 
lo50 0. I,,,) 
1350 0 I40 
2750 n,n93 
5150 0.051 
xi00 0 0x1 

(1, 

i:sos 
O-505 
O-505 
O.50h 
(1.485 
0.2.50 
0.217 
0 1x1 
n 102 
O-041 
0.027 
0.010 
0 on2 

ii,..: ,vir. 

O-489 5.90 
0.489 5%) 
0.489 590 
0485 h.07 
0.478 7-05 
0.268 49 5 
0,244 h2.3 
0.200 7X.3 
n~lo8 I45 
O-051 24X 
0.027 370 
0.010 540 
0.002 1000 

5-92 O-515 
5.92 0.515 
6.03 04R5 
6 80 0.493 
Il.4 0445 

123 0214 
I57 0.186 
202 O.lh6 
.I?,6 O-097 
6') 3 O-052 
IMO 0.028 
1540 0~010 
2890 woo2 

00.00l 5.87 5.87 
o.no3 5.87 
0.01 5.95 
0 03 6-20 
05 
0.7 

22 9 
28.5 
35-5 
h3.0 
102 
147 

I 0 
3 
IO 
30 

100 
1000 

1'000 0 ok 
23000 0 003 

215 
393 

--...._R= 10' ? 

Pr 
lm--mp -~- - 

rvu,,,, ,I,‘; -‘“’ 11,~~ SU,.” 

0 566 0.281 5.78 0.294 
001 5.66 oa1 5.7X 0.294 
0,003 S.66 0281 5.78 0.294 
0.01 5.73 0.281 5.88 0.289 
0.03 6.03 0,279 7.05 0.284 
0.5 22.6 O-162 49.8 O-142 
0.7 28.3 0137 62.0 O-II') 
1.0 34.8 0.111 78.0 0.101 
3 60.5 0.059 144 O-058 
IO too 0.028 246 0.02X 

1% 207 143 0.013 0~006 365 530 0.013 0.006 
1000 387 0.001 990 0.001 

IO' 

Lu ,, 0.’ 
5.95 i)-310 
h.40 u 304 
9 00 0.27s 

22.6 0~217 
h4.0 0 lh3 

xl< :I OOR 

S-80 
5.80 
5-85 
6 80 
II.6 

125 
158 
200 
384 
hS0 
1030 
1500 
2830 

0.296 
0,296 
0.294 
0.289 
0.258 

5.83 
5.92 
6.45 
IO.3 
24.4 

298 
380 

0.302 
0.301 

g:;::: 

0.111 
O-097 
0.085 

I,_ 

II140 o-CiYO 
I340 0~078 
2730 O-052 
5030 002X 

0.092 490 
0.055 Y60 
0.028 1750 
wo14 2700 
WOO6 4000 
0.001 7600 

0,:;:;: 
0.014 
0.006 
O.OOI 

8000 0015 
12000 
21000 ;:g: 



HEAT TRANSFER IN ANNULAR PASSAGES 

TabIe l-continued 

553 

I* = 0.50, Heating from core tube 

7 
‘.._ Re 

104 I 3 x 10’ 105 I 3 x 105 I 10” 

Pi- / Nu,, fl,* 1 Nut, IL* 1 Nut, B,* 1 Nu,, 8.* 1 Nut. &* 
-_I- 

8%: 

t::: 
0.598 

8:;;;: 

0.218 
0.121 
0.059 
0,027 
0T106 
oaJ2 

0651 
0,651 
0,656 
0 623 
0.533 

:.::: 
0.208 
0.115 
0,059 
0,028 

E$z 

X.01 
0003 
0 01 
0.03 
0.5 
07 
1.0 
3 

:: 

1E 

6.28 
6 28 
6 28 
6.37 
6.75 

24.6 
30 9 
38.2 
66.8 

106 
153 
220 
408 

0 620 
0 620 
II.620 

6 30 
6.30 

6 30 
6.30 
h.40 

0,659 6 30 
0,659 6.75 
0,637 9.40 
0,540 23.2 
0 430 65.5 
0.229 835 
0.206 1080 
0.183 1420 

0.114 0.059 ::zz 
0.031 8400 
ow7 12600 
oxlO 24000 

0 654 
0644 
0.585 

8:::: 
0.208 
0.185 
0.170 
0,111 
0061 
0,032 
oao7 
oaO2 

6.30 
6.40 
6.85 

10.8 
24 8 

310 
400 
C20 

6.30 
6.45 
7.53 

52 0 

;::: 

0.622 
0 627 
0,343 
0,300 

7.30 
12.0 

130 
166 
212 0,247 

O.ZlG Pii- 
0,059 260 
0 028 386 
0+06 558 
0002 1040 

402 
715 

1080 
1600 
3000 

1010 
1850 

:;:: 
8000 

105 I 3 x 10” 

e.* / NUOO -I e,* NUO. e,* N&O 

8:;:: 6.10 6 10 8:;:; 6.30 6.16 

0.146 6.22 Z:fE 6.90 
0 146 7.40 11.4 
0.140 12.7 0.125 26.3 
0.064 130 0.055 310 
::g; 206 165 0.042 0049 397 

0 026 390 0.024 9’% 
0013 680 0.012 1750 
0036 1030 0,006 2700 
oaO3 1500 0.003 4000 
0001 2830 oao1 7500 

NUO. e.* e.* 
0,152 
0.15A 

_I 
6.35 0.157 
6.92 0.153 

10.2 0,136 
24.6 0.102 
80.0 0.074 

823 
1070 8’%?J 
1390 0,035 
2760 0.023 
4980 0.012 
7850 

12OMJ 8:E 
22 500 om1 

-1 

0 140 5 92 
0,140 5.92 
0,140 6.00 
0 140 6.20 
0.140 7.55 
0.07 1 51.5 
0,063 64.3 
0051 800 
0,026 145 
0,013 243 
0.006 
0~003 :z 
OaOl 980 

OaOl 5 83 

0003 0.01 2:;: 

0.03 6 22 
05 22.5 
0.7 29 4 

0.150 
0,131 
0098 

8:E 
0.039 
0.024 
0012 
0+06 
oao3 
om1 

I* = 0.20, Heating from core tube 

106 3 x 10” LO” 

Nu,, e,* NU,. &* Nu, , e,* 
Efl 1.020 1.020 8.30 8.40 1,038 1.014 8.30 8.90 1.020 

8.50 1.025 9.05 0,980 12.5 ;:;:i 

9 70 0.944 14.0 0.796 33.6 0.748 
15.8 0.771 31.7 0600 81.0 0.374 

157 0.333 370 0,295 980 
196 0 286 473 0.260 1270 E 
247 0.248 0.229 
465 

8:;;; 

1% 0,137 :% :k 

1:: 2050 3150 0.073 0,036 9300 !j$;;: 

1760 ;:g:: 4630 0,016 13800 
3280 om2 8800 OaO4 26 000 8::; 

10” 

N&S 

“s’:: 

;:;; 

9.00 

:;:; 
46 8 
71.4 

120 
172 
243 
448 

e,* 

1009 
lGO9 
1,009 
1~ooO 
1,012 

0.520 0 412 
0.339 
0 172 
0 077 
0.036 
0,014 
0004 

3 x 10’ 

NU,, e,* 

8001 
0003 
0.01 
0.03 
0.5 
0.7 
1.0 
3 

:“o 
100 

1000 

8.30 1.028 
8 40 

;:;; 
f :% 
1.018 

10.1 0.943 
64.0 0.398 
79.8 0.338 
99.0 0.284 

175 0.151 
290 0.074 
428 
617 8:;:; 

140 0 002 

r* = 0.10, Heating from outer tube 
r-- 

‘e. 
Pr 

3 x 106 10’ 

NU.. e.* NU.0 o.* / N&o 8,* / Num 

6.12 
6.12 
6.24 
6.50 
7 95 

53 4 

66.0 81.8 
147 
246 
360 
525 
980 

e,* 

0.079 
0,079 
0.081 
0.08 1 
0 075 
0.032 

8:;;; 

0013 
0.006 
oaO3 
oaO2 

- 

-1 l- 
6.00 0.077 

;:g 0,077 0 077 
6.13 0.076 
6.45 0.076 

;;:; 0 0.032 039 

36,5 
61.5 ;:;:; 

99.2 
143 8:E 
205 oaQ2 
378 - 

0 
0001 
0.003 
0.01 
0.03 

8.: 
1.0 
3 

:x 

1E 

7.34 
12.1 
28.2 

320 
409 

6.68 0,085 
7.20 

10.8 8% 
26.4 0,052 

_ __ 
0.082 
0.082 
0.067 
0051 
0.025 
0.022 
0.019 
0.012 
OTJO6 
OTB03 
oaI2 

- 

71.8 
860 

0.036 
0.022 
0.020 
0.017 
0.011 
oaO6 
oaO3 
oQO2 

- 

1100 
1430 

:;lz 
8030 

12 100 
23 OCCI 

sib 

tz 
2720 

%z 



554 W. M. KAYS and E. Y. LEUNG 

Ttihle I--contirured 

‘.__ Re 
-.. 

10” 
I 

.__-I. 
Pr Nut, H,” : 

:.a01 
0.003 
001 
0.03 
0.5 
07 
ib 
3 

IO 

*iFi 
1000 

11.5 1475 
11.5 1475 
II.5 1475 
11 8 1.482 
12 5 1,472 
408 0632 
48.5 0512 
585 0412 
93.5 0202 
I40 0 089 
IYS 0041 
272 a.017 
486 0 004 

11.5 
11 5 
115 
Il.8 
141 
81 0 
YX o 
120 
206 
328 
478 
673 
1140 

101 

0;" ~ 
--___'_ 

I.SO2 
1502 
1475 
1442 
1.330 
0486 
0407 
0338 
0 175 
0081 
0.039 
0015 
0 no3 

115 
115 
117 
I3 5 
21.8 

141 
235 
292 
535 
x90 
1330 
1910 
3600 

IO' 

(1. 

I 500 
I480 
1473 
I.323 
I027 
0 394 
0 338 
0.286 
0 I62 
oa7x 
003x 
0015 
0003 

6 30 6 64 
6 30 6 64 
6 30 6 64 

0.01 643 7 00 
003 690 9 10 
0.5 Ih 3. 57 i' 
0.7 31.7 707 
1.0 378 860 

61 5 149 
99 x 248 
14i 362 
205 522 
380 975 

a single computing procedure. The results con- 
sist of the Nusselt number for one side only 
heated, and the influence coefficients. Employing 
equations (15) and (16) the Nusselt number on 
either side of an annular passage may be com- 
puted for any heat flux ratio, positive or negative. 

The computed Nusselt numbers for one radius 
ratio only, Y* = O-20, are plotted on Figs. 16 and 
17. The data for the other radius ratios in Table 1 
would appear similar if plotted. A cross-plot at 
a Reynolds number of 40 000 is shown on Fig. 
10. A comparison of the analysis with the 
experiments at PY =: 0.7 is given in Figs. 5-10, 
and the comparison is excellent, except at Rey- 
nolds numbers below 30 000 where, especially 
for the inner surface of the annulus, the analysis 
tends to over-predict the Nusselt number by up 
to 10 per cent. The reason for this discrepancy 
is not at present understood. 

One word of precaution in using this data 
should be added. It can be shown for laminar 
flow that longitudinal conduction begins to be a 
significant factor if the product, Re . Pr, is less 
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than 100. Since longitudinal conduction has 
been neglected in this analysis, the Nusselt 
numbers in Table I for which Re . Pr --: 100 
are undoubtedly over-predictions. Longitudinal 
conduction may be the difficulty in the low Rey- 
nolds number experiments discussed above 
because the longitudinal turbulent eddy conduc- 
tivity has been neglected. 

EXPERIMENTAL RESULTS FOR ASYMMETRlC 

HEATING 

The experimental apparatus was designed so 
that it could be used for asymmetric heating as 
well as for heating from one side of the annulus 
only. Asymmetric heating tests were run as a 
check on the fundamental solution theory. and 
also as a further check on the accuracy of the 
fundamental solutions. On Figs. 18 and 19 some 
examples of the results of the asymmetric 
heating tests are shown, together with the 
predicted performance. The predicted per- 
formance is based on the fundamental solutions 
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presented in Figs. 1, 2, 3, and 4 so that the 
effects of thermal entry length are included. 

The agreement between theory and experiment 
appears to be excellent. A reasonably wide 
range of heat flux ratio was employed, 0,689-l 5.5, 
with equally good results in all cases. Note that 
heat flux ratio can have a large influence on 
Nusselt number, and that the outer tube Nusselt 
number can be either above or below the 
inner tube Nusselt number depending upon heat 
flux ratio. 

I, T&e as~ptot~c Fundamental Solutions of 
the Second Kind for turbulent flow are developed 
analytically for a wide range of radius ratio, 
Reynolds number, and Prandtl number. These 
results have been checked experimentally at 
Pr = 0.7, and there is reason to believe that they 
are equally valid at very high and very low 

SUMMARY AND CONCLUSPONS 

In this paper the Fundamental Solutions of the 
Second Kind are partially developed for turbu- 
lent flow in a circular tube annulus. The accom- 
pl~shments of the paper may be summarized as 
follows. 

A Predicted /Vu, 
v Predicted Ahi 

o Experimental A&, 
0 Experimentat A/u? 

105 IO6 

Re 
FK;. 17. Computed outer surface Nusselt lumbers fad 
fu& devefoped velocity and temperature profiks for 

constant heat rate in an annulus with r* = 0.2% 

Re 
1000 

300 

A& 

tuu 

40 
IO4 

I 
3x104 IO5 
Re 

FIG. 18. Comparison of analysis and experiment 
for an as~mm~trica~~ heated azmuh1.3. 
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A Predicted Nu, 

V Predicted No, 
0 Experlmentol Nu, 

0 Experiment01 Nu, 

Re Re 
FIG. 19. Comparison of analysis and experiment for an asymmetrically heated annulu\. 

Prandtl numbers. The cases of the circular tube 
and flow between parallel planes have been 
included as the limiting cases of the annulus 
geometry, and as far as the authors are aware, 
this is the first time that a single consistent 
analysis for the entire Prandtl number spectrum 
has been attempted even for these limiting cases. 

2. The complete Fundamental Solution of the 
Second Kind is developed from experimental 
data for a fluid with Pr = 0.7. With this solution 
the thermal entry length problem may be 
handled, and superposition may be used to 
solve any heat flux distribution in the direction of 
flow. 

3. The method of superposition of funda- 
mental solutions to solve for any arbitrary heat 
flux ratio on the two surfaces of an annulus is 
demonstrated and verified experimentally. 
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R&nnn&-On considere le probleme de la transmission de chaleur dans le cas d’un ecoulement turbulent 
dans une conduite annulaire, le profil des vitesses et le flux de chaleur par unite de longueur &ant 
constants. Les solutions experimentales obtenues pour des longueurs ~~tablissement du regime 
thermique dun fluide de Pr = 0,7 sont present&es. Les solutions asymptotiques (profils de tempera- 
ture et de vitesse en regime Ctabli) sont dorm&s pour un grand domaine de rapports de rayons, de 
nombres de Reynolds et de nombres de Prandtl. Les solutions sont baseces sur des profils de vitesse 
et de diffusivite turbulente empiriques, et la validitt des solutions est experimentalement demontree 
pour Pr = 0,7. Une mtthode de superposition est proposQ pour resoudre le cas d’un chauffage 
asymetrique des deux parois de l’anneau, les dorm& experimentales obtenues dans ce cas sont en bon 
accord avec les resultats du calcul. Cet article est le 3cme dune serie (1, 2) qui termine quatre annees 

d’etudes sur la transmission de chaleur dans les passages annulaires. 

Z~~rn~~-~s wird das Problem des W~rne~~rga~es in turbulenter Str~m~g in einem 
konzentrischen Ringraum bei ausgebildetem Ge~hwindigkeitsprofil und konstanter W~mezufuhr 
pro Llngeneinheit behandelt. Versuchsergebnisse sind fiir die thermische EinlautXnge fur eine Fliis- 
sigkeit mit Pr = 0,7 angegeben. Asymptotische Losungen (ausgebildetes Geschwindigkeits- und 
Temperaturprofil) wurden ftir einen grossen Bereich von Radiusverhaltnissen, Reynoldszahlen und 
Prandtlzahlen ausgearbeitet. Die Liisungen beruhen auf empirischen Geschwindigkeitsprofilen und 
Profilen fur turbulenten Austausch, wobei ihre Giiltigkeit experimentell fiir Pr = 0,7 gezeigt wird. 
Eine Uberlagerungsmethode dient zur Losung des Problems der asymetrischen Beheizung von den 
beiden Oberflachen eines Ringraumes her. Versuchsergebnisse fiir asymmetrische Beheizung zeigen 
ausgezeichnete ~~reinsti~u~ mit der Analyse. Diese Arbeit ist die dritte einer Reihe (1, 2) die 

fiber eine vierjahrige Forschungst~tigkeit tiber W~~e~ber~ng in Rin~~umen berichtet. 

~H~O~al~Ha--PaCCMOTpeHa 3aAaYa 0 TenaOO6Mene npn Typ6yJNfTHOM TeYeHHII B KOHlfeH- 
TplWeCKOM HOJIblreBOM KaHaJIe C IIOJIHOCTblO pa3BkITbJM IIpO+iJIeM CKOPOCTH II IIOCTOFWIHO~ 

CKOpOCTblO odorpeea Ha eAHHHlJy &NGIbI. %WIepHMeHTaJlbHHM IlyTeM IIOJlyqeHbl petIteHEm 

AJIR BXOAHO~O yYacTrca cTa6nnmaanmr narpesa npa Pr = 0,7 .QJM raaa. fIonyYenr,r acn- 
MnToTkwecme peurewm (noJIHocTbm pasmTble npofjmm ckcopoc~s ki TeMnepaTypbI) finer 

UillpOKOrO ~IlNia3oHa RSMeHeHBR 0THOJJle)HHH paAMyCOB KaHaJIa, KpHTepHeB PetiHOJIbACa I 

nI)aHRTJIR. PeUIeHllFI OCHOBaHbI Ha IIoJIyYeEiHbIX 3KCIlepHMeHTaJibHO IIpO+iJiHX CKOpOCTIl It 

Typ6y~enT~io~ ZM@@y3HM. ~~PaBeA~~BOCTb PemeHMii ~OAT~ep~~e~ia O~~rH~M~ AaHH~M~ 

npn Pr = O,?. j&m pemeH~n saRariM 06 ac~~MeTp~YHoM narpene ~OBepXHoCTe~ KawajIa 

~~CnO~b30Ba~ HeToE cy~ep~o3~~~~. ~p~Be~eHH~e 3Kc~ep~~eHTa~bK~e gamzbre no acfitM- 

MeTptiqHOMy HarpeByXOpOiUOCOr~3Cy~TCRCTeOpeT~YeCti~Mut.3TaCTaTb~RBjIReTC~TpeTbeZI: 

~~ep~~(Ir2)H~ase~~~r~aeT*feTb~pexneT~rec~~ccne~osaHneTennoo6~e~a~~O~b~eBblXKa~a~ax. 


