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HEAT TRANSFER IN ANNULAR PASSAGES—
HYDRODYNAMICALLY DEVELOPED TURBULENT FLOW
WITH ARBITRARILY PRESCRIBED HEAT FLUX

W. M. KAYSt and E. Y. LEUNG}

(Received 15 December 1962)

Abstract—The problem of turbulent flow heat transfer in a concentric circular tube annulus with fully
developed velocity profile and constant heat rate per unit of length is considered. Experimentally
obtained solutions are presented for the thermal entry length for a fluid with Pr = 0-7. Asymptotic
solutions (fully developed velocity and temperature profiles) are developed for a wide range of radius
ratio, Reynolds number, and Prandtl number. The solutions are based on empirical velocity and
eddy diffusivity profiles, and the validity of the solutions is demonstrated experimentally for Pr = 0-7.
A superposition method is demonstrated for solving the problem of asymmetric heating from the two
surfaces of an annulus, and experimental data on asymmetric heating are presented which are in
excellent agreement with the analysis. This paper is the third in a series (I, 2) culminating a four year
study of heat transfer in annular passages.

NOMENCLATURE

ns,  non-dimensional radial co-ordinate, re-
¢p, specific heat at constant pressure; ferred to surface j, (s — r)/{s — r1);
Dy, hydraulic diameter, 2(ro — ri); f, non-dimensional temperature, defined
hy, unit convection conductance at sur- by equation (2);
face j; v,  kinematic viscosity;
k,  thermal conductivity; ¢, dummy axial variable, dimensionally
n, co-ordinate normal to a tube surface; similar to x;
q;', heat flux at surface j; p,  density;
r, radial co-ordinate of annulus geometry, 7,  total apparent shear stress;
measured from axis; @;, non-dimensional heat flux at surface j,
s,  radius of maximum axial velocity; defined by equation (2).
1, temperature;
u, local axial velocity;
V,  mean velocity; Non-dimensional groupings
X, axu_ll co-ordinate of annulus geometry; Nu, Nusselt number at surface j, i Dn/k;
y;,  radial co-ordinate of al?nulus geometry Pr, Prandtl number, prey/k;
measured from surface j. Re, Reynolds number, Dp¥/v:
r*,  annulus radius ratio, r;/r,;
Greek symbols ¥, surface shear stress ratio;
a, thermal molecular diffusivity; §,  slro;
en, thermal eddy diffusivity; s*, (F—rHQ1 —3);
en, momentum eddy diffusivity; u;", non-dimensional axial velocity referred
to shear velocity at surface j, u/+/(7;/p);
- T v, non-dimensional distance in radial direc-
et ot el Engnceting, Sontord ™" gion from surfuceJ, 1 (rl )
t Research Assistant, Mechanical Engineering, Stan- n,;» modified radial co-ordinate measured

ford University, Stanford, California.
M

fromsurface j, 15 y} (1 + 9p/(1 + 29)).
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Subscripts
e,  entrance of tube;
Jr either the inner or outer surface of the
annulus flow passage;
i, inner surface;
0, outer surface;

it, inner surface conditions, when inner
surface alone is heated;

og, outer surface conditions, when outer
surface alone is heated ;

jo, inner surface conditions when outer
surface alone is heated;

oi, outer surface conditions when inner
surface alone is heated;

mi, mixed mean conditions when inner
surface alone is heated;

me, mixed mean conditions when outer

surface alone is heated.

INTRODUCTION AND OBJECTIVES

TH1s PAPER has been prepared as part of a series
[1, 2] on steady heat convection in a circular
tube annular passage. In the first paper [1], it is
shown how the general problem of arbitrarily
specified heat flux and/or surface temperatures
on the two surfaces of an annulus can be solved
by superposition employing one or more
of four fundamental solutions to the energy
equation. The second paper [2] contains a
complete development of the four fundamental
solutions for hydrodynamically developed
laminar Bow in a concentric annulus. The present
paper is concerned with the same problem, but
for rurbulent flow.

The turbulent flow problem is two orders of
magnitude more complex than its laminar flow
counterpart because Reynolds number and
Prandtl number become parameters, and it is
beset with further difficulties because of our
incomplete knowledge of the details of the
turbulent heat transport mechanism. Thus, this
paper will be less complete than the previous
one, and, in fact, of the four fundamental
solutions, only the Fundamental Solutions of the
Second Kind are considered, and these only in
incomplete form. Nevertheless, sufficient data,
both analytic and experimental, are presented to
solve a large variety of annulus heat convection
problems in which heat flux on the surfaces is
specified.
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For four annulus radius ratios, 0-192, 0-253,
0-376, and 0-500, the Fundamental Solutions
of the Second Kind are developed completely
for air (Pr == 0-7) entirely from experimental
data. An asymptotic solution is then developed
analytically (velocity and temperature profiles
fully developed) for Prandtl number from 0 to
10%, Reynolds number from 10* to 105, and
radius ratio from 0-1 to 1-0. This solution is
shown to be in excellent agreement with experi-
ment for Pr == (7. Finally, experimental data
are presented for several cases of asymmetric
heating, and these are shown to be in excellent
agreement with predictions from the funda-
mental solutions.

ENERGY DIFFERENTIAL EQUATION
AND THE FUNDAMENTAL SOLUTIONS
OF THE SECOND KIND

Under conditions of steady hydrodynamicaily
fully developed turbulent flow with constant
fluid properties, negligible axial conduction, and
axially symmetric heating, the energy dif-
ferential equation may be written as follows if
it is assumed that an eddy diffusivity can be
rationally defined:

:’ [r(m + ) ;;J ) gé 1yt

At the axial distance x - 0 let the fluid and
both of the wall surfaces be at a uniform tem-
perature .. At this point, let the heat flux on
either the core wall or the ouater wall, 7, be
increased stepwise to a constant g, while the
opposite wall is insulated. Let a non-dimen-
sional fluid temperature and surface heat
flux be defined as,

' ol
oo Dy (5}‘:);‘ (2)

Then the boundary conditions become,

(1, on the heated wall ] .
{0, on the opposite wall [~
0, x = 0. 3

The nomenclature employed here is identical
with that of reference [1]. Since we deal here with

P 0,

0@ =
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solutions of the Second Kind, the superscript
(2) will henceforth be omitted.

The problem then reduces to

(1) seeking the fundamental solutions, 8;(x),
Boi(x), and Opi(x), for the boundary con-
ditions, @3 = 1, and P, = 0,

(2) seeking the fundamental solutions, 856(x),
B10(x), and Bpe(x), for the boundary con-
ditions, @4y = 1, and @;, = 0.

With these fundamental solutions the inner
and outer surface temperatures and the mixed
mean fluid temperature can be calculated for any
arbitrarily specified axial flux distribution on
either surface by taking advantage of the
linearity of (1) and using superposition. For
hydrodynamically fully developed axi-symmetric
flow the fundamental solutions are only func-
tions of the distance from the discontinuity in the
boundary condition. Then from the general
solution of the Second Kind, Table 1, reference
[1], it follows that,

D é=2 re
ti(x) = —kf Oi(x — &) dq, (§
Jg=0
D fe=2» 7
+ 7’5 Bio(x — £) dg; (€) + te. @
Je=o0
(e=z
o) = 9,} Boilx — &) dg,'(&)
JE=0
i
+ % Boox — £ dg(®) + 1. (5)
Je=o
.D {== ’
tm(%) = -E’f  bni(x — §)dg(®
AR
i -’2—"; Ono(x — £ dg/(&) + te.  (6)
Jé=o

For the more restricted case of a constant
heat flux, q,’, on the inner wall and a constant
heat flux, ¢, on the outer wall, (4), (5), and (6)
reduce to the following:

W) = 2 B 4] + 0ol g1+ 10 (7
o) = 28 (04 47+ Goo 4,1 + 1o (8)

in(3) = 2 B0 4;” + Ime09 4,1 + 1. 9)
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By subtraction the entrance temperature can
be eliminated and the temperature differences
between the fluid mixed mean and the two
surfaces can be calculated.

4 — 1) = 22 (10ux) — O] 4

+ [Bro(x) — Omo(0)1q,’}.  (10)

D 44
to(x) — tm(x) = 37 {Bi(x) — ()],
+ [Boo(x) — Oma(0)1q,’}. (11)
For the case where q. = 0, equation (10)
becomes,

KD — tnlx) = 2 [0u(x) — (0] 4]

For convenience a Nusselt number can be
defined for the inner surface:

Dn g
k(=) — ()]
Then if the inner surface alone is heated, Nu;

becomes Nuy; according to the subscript con-
vention, and it follows that,

1
9;65 — Omi(x)

Nuy(x) = (12)

Nuy(x) = 13

similarly,

1
Bo0(x) — Omolx)’

For the more general case of both surfaces
heated (but at independently specified heat
fluxes) the Nusselt number defined by equation
(12) is still useful and may be evaluated by
substituting equation (10) into (12). Making use
of (13) and defining influence coefficients,
6; and 6, the following simple expressions
for the Nusselt numbers on the two surfaces for
asymmetric heating are obtained:

Nuyi(x)
1—6i(x)-q, lq;
Nuoox)
1—-6,(x)q; g,

Ni uoo(X) = (1 4)

Nuy(x) = (15

Nuo(x) = (16)
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where,
weon Hmo(x) - gio(x)
KA es e
0r(x) = Umi{X) -— Ogi{x) (18)

Yool x) — an(rx)‘

It should be emphasized that to solve problems
where the heat flux on the two surfaces raries
axially equations (4), (5), and (6) must be
employed. If the heat flux on the two surfaces
is constant (though different) equations (7)-(16)
are all applicable in both the thermal entry
region and the fully developed region far
downstream. In the sections to follow, the various
#(x) are presented for a variety of radius ratios
and Reynolds numbers but only for a fluid with
Pr = 07. Thus, it is only for Pr == 0-7 that ther-
mal entry length and axially varying heat flux
problems can be solved with the data given here-
in. However, for the thermally fully developed
region (x -~ o) Nujj, Nugo, €7, and 6 are pre-
sented for all Prandtl numbers from 0 to 1000.
For most engineering applications, with the
exception of the low Prandtl number liquid
metal region. thermal entry length and axial
heat flux variation effects are not particularly
significant, whereas asymmetric heating effects
(q)/q7) may be quite significant. Thus the
solutions for thermally fully developed flow
are by no means of restricted usefulness but
rather form the more important part of this
paper. For laminar flow. like low Prandtl
number turbulent flow, the thermal entry region
solutions are of extreme importance and are
given completely in [2].

Note that g and ¢, are defined as positive
into the fluid. The solutions are equally applic-
able whether the heat flux ratio is positive or
negative. It is quite possible to have a negative
Nusselt number under asymmetric heating
conditions, and this does not destroy either the
validity or the usefulness of the Nusselt number.

EXPERIMENTAL APPARATUS
The experimental apparatus employed to
establish the Fundamental Solutions of the
Second Kind for £r =- 0-7 is described in com-
plete detail in [3], and somewhat less com-
pletely in [11.
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DATA REDUCTION

To determine the fundamental solutions from
the experimental measurements, equations (10}
and (11) were used directly. Series of tests were
run at various Reynolds numbers with the inner
tube heated, and then the outer tube heated.
The mean fluid temperature at each point along
the tube was evaluated by integration of the heat
flux up to that point and making an energy
balance. Where the outer tube was heated the
heat flux was first corrected by deducting the
calibrated heat leak. In all of the tests there was
some radiation between the surfaces, and the
radiation rate was estimated assuming an
emissivity for Inconel of 0-35. Because of the
radiation, no tests were actually run with heat
convection from one surface only, although the
heat radiated across the passage and conducted
into the air from the opposite side was small
relative to that directly conducted to the air
from the heated surface. A method was
developed, involving some minor approxima-
tions, so that all four of the dimensionless
temperature differences in (10} and (11) could be
evaluated from the two sets of tests, even though
the heating was slightly asymmetric.

All fluid properties were evaluated at local
mixed mean temperature. To avoid difficulties
with the influence of temperature dependent
fluid properties the heat fluxes were adjusted so
that local temperature differences were never
more than about 50°F. Nevertheless, a correction
taking into consideration this effect was made by
assuming that the dimensionless temperature
differences vary as the absolute temperature
ratio, surface to mean fluid, to the 0-575 power,
since this is the effect that may be deduced from
the large temperature difference circular tube
data of Humble ef al. [4]. The correction is thus
a maximum of about 5 per cent.

The heated length-to-hydraulic-diameter ratio
of the tubes varied from 23 for the 0-192 radius
ratio tube to 73 for the 0-500 radius ratio tube,
Thus. for none of the tubes was it possible 1o
measure directly the asymptotic temperature
differences (or Nusselt numbers) since some
remnant of the thermal entry length would still
be in evidence even at these lengths. To determine
the asymptotic solutions, an extrapolation was
employed based on the reasonable assumption
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that the tube-length dependence of the solution
may be approximated by the first term of the
exact infinite series solution, which is a simple
exponential. 8y — O and 850 — Opo were
plotted as functions of x, a smooth curve was
drawn through the data points, and then the
last 5 per cent of the rise of the curve was
employed as the basis for the extrapolation. The
data along a half to three-quarters of the heated
length of the tube was generally in this 5 per cent
region, and the resulting extrapolation yielded
an asymptotic solution that typically differed
from the last data point by 0-5 to 4-0 per cent.

The temperature differences, 6o — 8 and
Oms — B6i, are much more difficult to establish
experimentally because they are very small
relative to the other differences and are very
sensitive to small experimental uncertainties.
This is especially true of 8, where a small
amount of heat leak has a large effect. By the
same token, these differences are much less
important in application of the results. In the
data presented, these differences are based
partially on the experimental measurements and
partially on the asymptotic behavior predicted
in the analytical section of this paper.

A complete analysis of the experimental un-
certainty is presented in [3], and the conclusions
only will be given here. The expected uncertainty
in the dimensionless mean temperature dif-
ferences (Nusselt number inverses) for the case of
the inner tube alone heated is 4-3-2 per cent.
For the outer tube alone heated, the estimated
uncertainty is 4-2-6 per cent. The uncertainty in
the Reynolds number determination is +4-2-0
per cent.

The best verification of the low uncertainty
estimates lies in the excellent correlation between
analysis and experiment obtained in the laminar
flow work reported by Lundberg, McCuen and
Reynolds [2] using the same apparatus and the
same procedures. Virtually all of the sources of
error are greatly magnified at the very low flow
rates employed in the laminar flow experiments.

EXPERIMENTALLY DETERMINED FUNDA-
MENTAL SOLUTIONS OF THE SECOND KIND
The fundamental solutions deduced from the
experimental measurements are presented in
Figs. 1, 2, 3, and 4. Each figure covers one radius
ratio and five different turbulent flow Reynolds
numbers. All of the fundamental solutions of the
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FiG. 1. Fundamental solutions of the second kind for r* = 0-192 and Pr = 0-70.
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FiG. 4. Fundamental solutions of the second kind for r* = 0-500 and Pr = 0-70.

second kind are plotted with the exception of
0m: and Opo. These latter can be established
by simple energy balances and expressed in
algebraic form.

_ 4r*(x/Dn)
t= RePr(l +r¥)

4 (x/Dn)
T RePr(1 -+ r¥y

These solutions can now be used directly in
equations (4), (5), and (6) for calculation of any
arbitrary heat flux distribution on the two sur-
faces of the annulus, as well as in the more
restricted equations (7)—(18).

The solutions are, of course, limited to a fluid
with Pr = 0-7 and are restricted to the par-
ticular radius ratios and Reynolds numbers of
the tests. However, cross-plotting and inter-
polation could be employed to increase the
generality of the results.

Om (19)

(20)

om /]

EXPERIMENTAL RESULTS FOR FULLY
DEVELOPED CONSTANT HEAT RATE
In a previous section the method of extra-
polation of the thermal entry length data to

obtain the asymptotic solutions is described.
These results have been reduced to Nusselt
numbers and plotted in Figs. 5 to 10.

The results for the circular tube plotted in
Fig. 5 were obtained to provide another check
on the experimental apparatus, and alsc, of
course, because the circular tube is one of the
limiting cases of the annulus. For comparison
purposes, the analytic solution of Sparrow,
Hallman, and Siegel [5] is plotted, as well as the
solution described in the next section of this
paper, and the following empirical equation
which has been used by the authors to correlate
a large amount of experimental data for the
constant heat rate asymptotic Nusselt number
for fluids in the gas Prandtl number range.

Nu = 0-022 Pr®5 Re®8, 1)

The test results are seen to agree very well with
both of the analytic solutions as well as with the
empirical equation.

Figs. 6-9 show the asymptotic Nusselt num-
bers for four radius ratios of annulus, together
with the analytic results discussed in the next
section.

On Fig. 10, the results are plotted as a function
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of radius ratio for one particular Reynolds
number, 40000, so that the effect of radius
ratio can be clearly seen. Also included is the
inner surface Nusselt number from the rather
limited amount of data obtained at r* = 0-029.

ANALYSIS FOR FULLY DEVELOPED CONSTANT
HEAT RATE

The large number of variables involved in the
turbulent flow annulus heat-transfer problem
makes it rather impracticable to attempt to
obtain a complete solution experimentally.
Semi-empirical analytic solutions have been
obtained for turbulent flow in a circular tube
that are in very good agreement with experiment,
and it would be very useful if the methods em-
ployed could be successfully extended to the
annulus. In principle, the thermal entry length
solutions can be obtained just as readily as the
asymptotic solutions, but the computation
problem becomes enormous, and only the
asymptotic solutions are considered here.

Since what is believed to be good experimental
data are now available for a fluid with Pr = 0-7,
the major purpose served by the analysis will be
to extend the results to other Prandtl numbers. A
fortunate feature of this problem is the fact
that at very low Prandtl numbers, the problem
approaches one of pure molecular conduction
about which there is little uncertainty, while at
very high Prandtl numbers, the heat-transfer
resistance is concentrated so close to the wall
surfaces that the geometry becomes of minor
importance, and it is only necessary that the
heat-transfer behavior of the sublayers be
properly handled. The methods that have been
successful for flow in a circular tube at high
Prandtl numbers should be equally applicable
here. Thus it is that the assumptions that must
be made in the annulus heat-transfer analysis
are most critical in the region near Pr = 1-00,
and it is, of course, in this region where we do
have good experimental data to fall back upon.
The analysis can be looked upon as an extra-
polation of the experimental data, but a rather
unique extrapolation in that the assumptions on
which it is based become of decreasing conse-
quence the farther the extrapolation is carried.

One of the major difficulties in the analysis of
turbulent flow in a circular tube annulus is the
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determination of the ratio of the shear stresses
on the two surfaces, and the related problem
of determining the radius of maximum velocity,
which is assumed to be the point of zero shear
stress. If the radius of zero shear (maximum
velocity) is designated as s, the relation between
s and the surface stress ratio can be readily
shown for fully developed flow to be,

*__ro_(r3~s2)__(l—s'2)r*
T @y

where § = s/ro.

T

(22)

For laminar flow § is a unique function of »*
that can be easily evaluated, but there is no
direct way to determine this function for
turbulent flow, short of actually measuring it.
Since a heat and momentum analogy method is
to be used to calculate heat transfer, the shear
stress distribution must be known. Note that
this difficulty does not arise in the analysis of
fully developed flow in a circular tube or be-
tween parallel planes (the two limiting cases of
the annulus) because symmetry imposes a linear
shear stress distribution for both laminar and
turbulent flow.

A number of investigators have reported
turbulent velocity profile measurements in cir-
cular tube annuli, and these provide probably
the best source of data on shear-stress ratio.
It is extremely difficult to measure shear stress
directly, but the radius of maximum velocity can
be scaled from velocity profile measurements,
although because of the rather flat profile it is
difficult to get high precision. On Fig. 11 the
radius of maximum velocity, plotted in the form
s* = (§ — r¥/(1 — §) vs. r*, is given from the
authors’ interpretation of profiles presented by
Lorenz [6], Rothfus, Monrad, and Senecal
[7], Knudsen and Katz [8], Owens [9], and
Barrow [10]. Also shown on this plot is the
laminar flow solution, and the result if the shear
stresses on both surfaces were equal. The
Reynolds numbers for these data vary from about
10 000 to over 700 000. Some of the investigators,
notably Rothfus et al. and Barrow, conclude
that the turbulent shear stress ratio is essentially
the same as for laminar flow, but these results
suggest a somewhat smaller ratio. There may
well be 2 Reynolds number effect, in which case
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the fact that both the Rothfus and Barrow data
are for moderately low Reynolds numbers
may be significant. Of possibly greater signifi-
cance is the fact that heat-transfer predictions
based on the laminar shear stress ratio tend to
yield Nusselt numbers on the inner surface that
are considerably higher than measured, and it
was only by using a lower curve that the authors
were able to obtain predicted Nusselt numbers
in good agreement with the heat-transfer
measurements. The proposed curve,
F = (r*){)-:}ﬁ (23)
was drawn so as to heavily weight the point at
r* = 0052 because this is believed to be the
most accurate of all those plotted. Thus for the
present analysis, equations (22) and (23) were
used for the shear stress ratio, which then
establishes the complete shear stress distribution.
Velocity and eddy diffusivity profile equations
were developed by first breaking the flow area
into four sections: (1) a sublayer near the inner
surface; (2) a sublayer near the outer surface:
(3) a fully turbulent region from the inner sub-
layer to the point of maximum velocity; (4} a
fully turbulent region from the outer sublayer
to the point of maximum velocity. The equations
employed in these various regions will first be
given, and then their origins will be discussed.
For both of the sublayers. the momentum
eddy diffusivity was evaluated from,

ef" = mu {1 — exp (—mu, ) ),

where m = ¢-0154. (24)

The velocity profile in the sublayers was
obtained by integration of the defining equation
for total apparent shear stress, assuming the
shear stress constant at the wall value, and using
equation (24) for the diffusivity. This result can-
not be put in a closed form equation. The sub-
Tayers were considered to extend to n* -= 42,
since it is at this point at which the sublayer
velocity matches the fully turbulent region
velocity.

The momentom eddy diffusivity equation for
the region between the outer sublayver and the
point of maximum velocity is.

€3l (r-

R 15

l'4 Jt!
Sy (1 — 5 (1 - 22

[P 4+-060 20 25
The corresponding equation for the region from
the point of maximum velocity to the inner
surface sublayer is,

(i

syt

ar_otte (] 2
b P L AL L
(L 06 ™) (91— )]
i § - ok ‘t
(A [1 T A (T .»i.sﬂ)] e (20

The wvelocity equation used for the outer
turbulent region is,

u" =25y + 5. (27)
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The corresponding velocity equation for the
inner region is,

1

2 Innf + G
where k; and C; are variable coefficients chosen
so that at all times (1) the velocity at the maxi-
mum velocity point matches the velocity equa-
tion from the outer surface, and (2) the velocity
matches the sublayer velocity at n,” = 42.

The sublayer diffusivity equation is essentially
the equation proposed by Deissler [11] with a
slightly modified independent variable. Deissler
demonstrated that this equation works very well
for heat-transfer calculations to high Prandtl
number for circular tubes and there is no
reason to believe that the sublayers on the
annulus surfaces, should behave any dif-
ferently than in a circular tube.

The turbulent region diffusivity equations,
(25) and (26), are essentially modifications of
the diffusivity expression proposed by Reichardt
[12]. The momentum eddy diffusivity has been
measured from a number of the velocity profiles
presented in the above cited references, and two
examples are shown in Figs. 12 and 13. The
modifications to Reichardt’s equation are purely
empirical and were made to obtain a fit to the

ul =

(28)
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FiG. 12. Experimental data on momentum eddy
diffusivity in an annulus.
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Fic. 13. Experimental data on momentum eddy
diffusivity in an annulus.
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measured diffusivities, as shown in the figures.
As either of the surfaces are approached both
equations approach 0-4y+ which is the form
predicted by mixing length theory and is con-
sistent with all known measurements near a wall.
Thus the modifications are primarily in the
central region of the passage. For a sym-
metrically heated tube, accurate data on the
diffusivity in the central region is not par-
ticalarly important, but for the asymmetric
type of heating considered here it is definitely
necessary to have reasonably accurate data. The
rather complex nature of the equations arises
from the necessity of a pair of equations that
will be adequate for all radius ratios, including
the limiting cases of the circular tube and flow
between parallel planes.

The two velocity profile equations, (27) and
(28), are not derivable from the diffusivity
equations, but do fit the available experimental
data relatively well, as can be seen in Figs. 14
and 15. The inconsistency between the velocity
and diffusivity equations is not important
because nowhere in the computing procedure
were the velocity equations differentiated. The
velocity profiles could have been derived from
the diffusivity equations and the shear stress
distribution, but a considerable saving in com-
putation time was effected by employing the
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F1G. 14. Experimental velocity profiles in an annulus in the region between the
point of maximum velocity and the outer surface sublayer.,
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Fi1c. 15. Experimental velocity profiles in an annulus in the region between the
inner surface sublayer and the point of maximum velocity.

simpler velocity equations. Equation {27) is
recognized as the simple Nikuradse equation
with the Reichardt middle law modification.
Equation (28) is simply an empirical modifica-
tion to fit the experimental data.

The essence of the heat and momentum
analogy method of calculation lies in the assump-
tion of a definite relationship between the thermal
and momentum eddy diffusivities. The procedure

used here was a modification of the procedure
employed by Sleicher and Tribus [13]. The
relationship calculated by Jenkins [i4] was
used, but the ratio of thermal to momentum
eddy diffusivity was multiplied by a constant
factor 1-20 so as to bring the calculated heat-
transfer results for air in a circular tube into line
with the experiments. However, in the sub-
layers it was assumed that equation (24) could
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be used directly for thermal eddy diffusivity, i.e. solution, e.g. for points well downstream of
that the diffusivities were always equal. The basis  the beginning of heating where a fully developed
for this is that Deissler [11] employed equation temperature profile is obtained. For constant
(24) for a circular tube and obtained excellent heat rate per unit of tube length this can be
correlation with experiments up to very high accomplished by setting the derivative on the
Prandtl numbers. At high Prandtl numbers the right-hand side of (1) equal to the mixed mean
turbulent heat transfer behavior is very sensitive temperature gradient, which is a constant.
to the sublayer diffusivity, and rather insensitive ~The equation becomes an ordinary differential
to the diffusivity in the central region, whereas equation which can be readily solved numerically.
the reverse is true at low Prandtl number. It The calculations were carried out on a
appears that for present purposes equation (24) Burroughs 220 digital computer, and the results
can be looked upon as an expression for the are presented in Table 1. The radius ratios
thermal eddy diffusivity rather than the momen- considered include the limiting cases of the
tum eddy diffusivity. circular tube, r* = 0-00, and flow between

The problem now is simply one of integrating parallel planes, r* = 1-00, as well as the annulus
equation (1) for the indicated boundary con- radius ratios 0-10, 0-20, 0-50, and 0-80. The
ditions employing the velocity and thermal Prandtl number was varied from 0-0 to 1000, and
eddy diffusivity data discussed above. Calcula- the Reynolds number from 10% to 108, Thus, a
tions were carried out only for the asymptotic very extensive range of variables is covered with
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Fi1G. 16. Computed inner surface Nusselt numbers for
fully developed velocity and temperature profiles for
constant heat rate in an annulus with r* = 0-20.
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¥ == 1-00, Paraliel plates
Re 10t
—

Py ) Nu (7
0 570 0428
0-001 5-70 0428
0-003 5-70 0428
0-01 5-80 0-428
0-03 610 0-428
[UN] 225 0256
07 278 0-220
1-0 35-0 0-182
R) 60-8 0-095

10 101 0-045
30 147 0-021
100 210 0-009
1000 390 0-002 997 0002
pit 0-80, Heating from outer tube
Re 10! 3o 0

Pr Nugo 0,% Nu 1%

o 5-65 0-379 570 0-386
0-001 5-65 0-379 5-70 0-386
0-003 5-65 0-379 570 0386
0-01 575 0-381 S-85 0-336
0:03 610 0-388 6:90 0-380
05 22-4 0-225 48-0 191
0-7 28-0 0-192 61-0 0-166
1-0 34-8 0159 765 0141
3 61-3 0-083 142 0079
10 100 0-039 243 0-039
30 146 0-019 365 0-019
100 209 0-008 533 0-008
1000 385 0-002 1000 0-002
0-80, Heating from core tube

10!

Pr Nu, o,
0 590 0-505
0 5-90 0-503
0 5-90 0-505
V2 607 0-506
Q- 7-05 0-485
0 - 495 0-250
[¢8 . 62-3 0-212
1 - 78-3 0181
3 3 - 145 0102
10 102 0-051 248 0-051

30 147 0-027 370 0-027

100 215 0-010 540 0-010

1000 393 0-002 1000 ¢-002

1
03
1

w000 0000
O\IMBOOO

Table 1

120

17
380
680
1030
1520
2880

0-390
0-193
170
0148
0-089
0-045
0-022
0-010
0002

0-002

oSS

0515
0-485
0493
0-445
0-214
186
0-166
0-097
0-052
0-028
0-010
0-002

0296

0296
0-294
0-289
0-258
0-123
0-107
4092
0-055
(-028
0-014
0-006
0-001

6-32
9-80
2390

290
378
486
966
1760
2720
4030
7650

0460

0-460
0-450
0407
0-330
0174
0-156
0138
0-087
0-045
0-023
0-010
0-002

4000
7720

Ny

595

6-00
6-40
10:0
230
296

960
1750
2700
4000
7600

0-406
0-407
0-361
0-290
0-153
0-136
0-120
0-076
0-040
0021
0009
0002

0-011

LS
|

4
—ot N

t
Wensvtuoe |

78Q
1030
i340
2700
5080
3000
12000
23000

23000

108
Nug:

597
633
3-80
217
61+
800
1050
1350
2750
5150
8100
12 000
23000

0-468

0-460
0-422
0-333
(-255
0157
0-142
0-128
{084
0-046
0024
0011
0-002

¥

0409

0407
0-374
0-286
0216
2436

0528
0-516
0468
G382
0-276
0174
O-fot
0140
0092
0-051¢
3030
0-012
9-002
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0310

0304
0378
0217
0163
0098
0-090
0-078
0-052
0-028
G-G15
0-006
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Table 1—continued
r¥ = 0-50, Heating from core tube
o . o
T~ ~,}3 10¢ 3 x 10t 1 105 3 x 108 10¢
Pr Nut, g% Nu, 9% ’ Nu,, 9,* Nu, o, Nu, 0%
0 628 0620 630 0632 630 0651 630 0-659 630 0654
001 628 0620 630 0632 630 0651 640 0-659 675 0
0003 628 0-620 630 0632 6-40 0656 685 0637 9-40 0-585
001 637 0622 645 0636 7-30 0623 10-8 0-540 232 0-427
0-03 675 0627 7-53 0-598 120 0533 248 0430 655 0-333
05 246 0343 520 0-292 130 0253 310 0229 835 0-208
07 309 0-300 66-0 0-258 166 0-225 400 0-206 1080 0-185
10 38-2 0-247 83:5 0218 212 0-208 520 0-183 1420 0170
3 668 0219 152 0121 402 0115 1010 0-114 2870 0-111
10 106 0-059 260 0059 715 0-059 1850 0-059 5400 0061
30 153 0028 386 0-027 1080 0028 2850 0-031 8400 0-032
100 220 0-006 558 0-006 1600 0-006 4250 0-007 12 600 0-007
1000 408 0002 1040 0-002 3000 0002 8000 0-002 24 000 0-002
r¥ = 020, Heating from outer tube
- ke 10¢ 3 % 100 10° ‘ 3 % 10° 10°
Pr | Neoo 8.% Nu, 9,* Nty 0,% ] Nitoo 8.% Nitoo 8,%
0 583 0140 592 0-145 610 0-151 616 0152 635 0-157
0-001 583 0-140 5-92 0-144 610 0151 630 0-154 692 0-153
0003 583 0-140 600 0-146 622 0-150 690 0-150 102 0136
001 5.95 0 140 620 0146 7-40 0-144 11-4 0131 246 0102
0-03 622 0-140 7-55 0-140 127 0-125 263 0098 800 0-074
05 225 0-071 51-5 0-064 130 0-055 310 0-049 823 0-044
07 294 0063 64-3 0055 165 0049 397 0-044 1070 0040
1-0 35.5 0051 800 0-046 206 0-042 504 0-039 1390 0-035
3 600 0026 145 0026 390 0024 980 0-024 2760 0-023
10 98-0 0013 243 0013 680 0012 1750 0012 4980 0-012
30 142 0-006 360 0-006 1030 0-006 2700 0-006 7850 0-006
100 205 0-003 520 0-003 1500 0-003 0-003 12 000 0-003
1000 380 0-001 980 0001 2830 0-001 7500 0-001 22 500 0-001
r* = 020, Heating from core tube
T Re 10¢ 3 % 106 108 3 % 108 to*
Pr | Vo o.% N, 0% Na, o.% Nt 0% Nt 0.
0 840 1009 8-30 1-028 830 1-020 8:30 1-038 830 1-020
0001 8 40 1-009 840 1-040 830 1-020 8-40 1-014 890 0976
0003 840 1-009 8:40 1-027 850 1-025 9-05 0980 125 0-834
0-01 850 1-000 8-60 1-018 970 0-944 14-0 0-796 336 0-748
0-03 9-00 1012 10-1 0943 158 0771 317 0-600 81-0 0374
05 31-2 0-520 64-0 0-398 157 0333 370 0295 980 0-262
07 386 0412 79-8 0-338 196 0286 473 0-260 1270 0235
1-0 46 8 0-339 99.0 0284 247 0-248 600 0229 1640 0-209
3 774 0172 175 0-151 465 0-143 1150 0137 3250 0-135
10 120 0077 290 0-074 800 0072 2050 0-073 0077
30 172 0-036 428 0-034 1210 0-035 3150 0036 9300 0-038
100 243 0014 617 0014 1760 0-015 4630 0016 13 800 0-016
1000 448 0004 140 0002 3280 0002 8800 0-004 26 000 0-003
r¥ = 010, Heating from outer tube
T~ Re
~0 10t 3 x 10t 10° 3 x 108 10¢
Pr | Nuoa 8% Nu,, 6,* Nuy, 8% Nitso 8, Nuy, 4,*
0 600 0077 612 0079 632 0-081 650 0-084 668 0-085
0001 600 0077 612 0079 640 0-082 6-60 0-082 720 0-082
0-003 600 0077 624 0-081 655 0-083 734 0-082 10-8 0071
0-01 613 0076 650 0-081 780 0077 12-1 0-067 264 0-052
003 645 0-076 795 0075 137 0-065 282 0051 71-8 0036
05 24-8 0039 534 0-032 134 0028 320 0-025 860 0-022
07 29-8 0032 660 0-028 167 0-024 409 0-022 1100 0-020
1-0 36'5 0-026 818 0023 212 0021 520 0-019 1430 0017
3 61'5 0013 147 0013 395 0012 1000 0012 2830 0-011
10 99-2 0-006 246 0-006 685 0-006 1780 0006 5200 0-006
30 143 0-003 360 0-003 1030 0-003 2720 0-003 8030 0-003
100 205 0-002 525 0-002 1500 0-002 4030 0-002 12 100 0-002
1000 378 — 980 — 2850 — 7600 — 23 000 —
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Table 1—-continued
r* == (0 10, Heating from core tube
T Re 100 ! 31 or
~ | o _ o I
Pr Nu,, A Nu,, a,® Nu,, Nu,, A
0 115 1475 115 1502 115 T e w41
0-001 11-5 1475 115 1502 115 12:3 1410
0-003 11-5 1475 115 1 475 117 17-0 11124
001 118 1-482 11-8 1 442 135 390 0 760
0-03 125 1472 141 1-330 218 103 0526
05 408 0632 810 0 486 191 1160 0294
07 48-5 0512 98 0 0407 235 1510 0269
10 585 0412 120 0338 292 1910 0232
3 935 0202 206 0175 535 3720 0148
10 140 0089 328 0081 890 6700 0077
30 195 0041 478 0-039 1320 10 300 0040
100 272 0017 673 0015 1910 15 200 0018
1000 486 0 004 1240 0003 3600 o8 700 004
»* = 0, Circular tube
T Re 10¢ ; ERTY ' 10 3o 0"
Pr % Nu Nu i x" ) 77\7\'717 777777 Nu o N »—j{“'
0 6 30 664 T 6-84uv"; o A(:Z)VSMr o 7;06
0-001 6 30 6 64 6-84 708 812
0-003 6 30 664 710 8 14 28
0-01 643 700 3 90 142 30-5
003 690 910 159 324 80 5
05 263 573 142 340 895
07 317 707 178 430 1150
1-0 378 86 0 222 543 1470
3 615 149 404 1030 2900
10 99 8 248 690 1810 5220
30 141 362 1030 2750 8060
100 205 522 1510 4030 12 000
1000 380 975 2830 7600 22 600

a single computing procedure. The results con-
sist of the Nusselt number for one side only
heated, and the influence coefficients. Employing
equations (15) and (16) the Nusselt number on
either side of an annular passage may be com-
puted for any heat flux ratio, positive or negative.

The computed Nusselt numbers for one radius
ratio only, #* = 0-20, are plotted on Figs. 16 and
17. The data for the other radius ratios in Table 1
would appear similar if plotted. A cross-plot at
a Reynolds number of 40 000 is shown on Fig.
10. A comparison of the analysis with the
experiments at Pr = 0-7 is given in Figs. 5-10,
and the comparison is excellent, except at Rey-
nolds numbers below 30 000 where, especially
for the inner surface of the annulus, the analysis
tends to over-predict the Nusselt number by up
to 10 per cent. The reason for this discrepancy
is not at present understood.

One word of precaution in using this data
should be added. It can be shown for laminar
flow that longitudinal conduction begins to be a
significant factor if the product, Re - Pr, is less

than 100. Since longitudinal conduction has
been neglected in this analysis, the Nusselt
numbers in Table | for which Re- Pr -7 100
are undoubtedly over-predictions. Longitudinal
conduction may be the difficulty in the low Rey-
nolds number experiments discussed above
because the longitudinal turbulent eddy conduc-
tivity has been neglected.

EXPERIMENTAL RESULTS FOR ASYMMETRIC
HEATING

The experimental apparatus was designed so
that it could be used for asymmetric heating as
well as for heating from one side of the annulus
only. Asymmetric heating tests were run as a
check on the fundamental solution theory. and
also as a further check on the accuracy of the
fundamental solutions. On Figs. 18 and 19 some
examples of the results of the asymmetric
heating tests are shown, together with the
predicted performance. The predicted per-
formance is based on the fundamental solutions
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presented in Figs. 1, 2, 3, and 4 so that the
effects of thermal entry length are included.

The agreement between theory and experiment
appears to be excellent. A reasonably wide
range of heat flux ratio was employed, 0-689-15-5,
with equally good results in all cases. Note that
heat flux ratio can have a large influence on
Nusselt number, and that the outer tube Nusselt
number can be ecither above or below the
inner tube Nusselt number depending upon heat
flux ratio.

SUMMARY AND CONCLUSIONS
In this paper the Fundamental Solutions of the

555

1. The asymptotic Fundamental Solutions of
the Second Kind for turbulent flow are developed
analytically for a wide range of radius ratio,
Reynolds number, and Prandtl number. These
results have been checked experimentally at
Pr = (-7, and there is reason to believe that they
are equally valid at very high and very low

A Predicted Ay,
v Predicted My,
o Experimental My,
& Experimental My
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Fia. 17 Computed outer surface Nusselt numbers for
fully developed velocity and temperature profiles for

constant heat rate in an annulus with r* = 0-20,

Fic. 18. Comparison of analysis and experiment
for an asymmetrically heated annulus.
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FiG. 19. Comparison of analysis and experiment for an asymmetrically heated annulus.

Prandtl numbers. The cases of the circular tube
and flow between parallel planes have been
included as the limiting cases of the annulus

geometry, and as far as the authors are aware,
this is the first time that a single consistent
analysis for the entire Prandtl number spectrum
has been attempted even for these limiting cases.

2. The complete Fundamental Solution of the
Second Kind is developed from experimental
data for a fluid with Pr = 0-7. With this solution
the thermal entry length problem may be
handled, and superposition may be used to
solve any heat flux distribution in the direction of
flow.

3. The method of superposition of funda-
mental solutions to solve for any arbitrary heat
flux ratio on the two surfaces of an annulus is
demonstrated and verified experimentally.
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Résumé—On considére le probléme de Ia transmission de chaleur dans le cas d’un écoulement turbulent
dans une conduite annulaire, le profil des vitesses et le flux de chaleur par unité de longueur étant
constants. Les solutions expérimentales obtenues pour des longueurs d’établissement du régime
thermique d’un fluide de Pr = 0,7 sont présentées. Les solutions asymptotiques (profils de tempéra-
ture et de vitesse en régime établi) sont données pour un grand domaine de rapports de rayons, de
nombres de Reynolds et de nombres de Prandtl. Les solutions sont basées sur des profils de vitesse
et de diffusivité turbulente empiriques, et la validité des solutions est expérimentalement démontrée
pour Pr = 0,7. Une méthode de superposition est proposée pour résoudre le cas d’un chauffage
asymétrique des deux parois de I’anneau, les données expérimentales obtenues dans ce cas sont en bon
accord avec les résultats du calcul. Cet article est le 3¢éme d’une série (1, 2) qui termine quatre années
d’études sur la transmission de chaleur dans les passages annulaires.

Zusammenfassung—Es wird das Problem des Wirmeiiberganges in turbulenter Strémung in einem
konzentrischen Ringraum bei ausgebildetern Geschwindigkeitsprofil und konstanter Wirmezufuhr
pro Liangeneinheit behandelt. Versuchsergebnisse sind fiir die thermische Einlauflinge fiir eine Fliis-
sigkeit mit Pr = 0,7 angegeben. Asymptotische Losungen (ausgebildetes Geschwindigkeits- und
Temperaturprofil) wurden fiir einen grossen Bereich von Radiusverhiltnissen, Reynoldszahlen und
Prandtlzahlen ausgearbeitet. Die Losungen beruhen auf empirischen Geschwindigkeitsprofilen und
Profilen fiir turbulenten Austausch, wobei ihre Giiltigkeit experimentell fiir Pr = 0,7 gezeigt wird.
Eine Uberlagerungsmethode dient zur Losung des Problems der asymetrischen Beheizung von den
beiden Oberflichen eines Ringraumes her. Versuchsergebnisse fiir asymmetrische Beheizung zeigen
ausgezeichnete Ubereinstimmung mit der Analyse. Diese Arbeit ist die dritte einer Reihe (1, 2) die
iber eine vierjdhrige Forschungstitigkeit iiber Wirmeiibergang in Ringriumen berichtet.

Angoranua—PaccMOTpeHa 3aaua o Tennoo6Mene NpH TYPOYJIEHTHOM TEYeHHM B KOHI{EH-
TPUYECKOM KOIBIEBOM KaHAJe ¢ MOJHOCTBIO PA3BUTHIM NPOQHIEM CKOPOCTH M IOCTOAHHON
CKOPOCTBIO 00OrpeBa Ha eAMHMILY NJIMHEl, DKCHEPHMEHTATHHBIM IIyTeM NOIYYEHH pelleHus
HIA BXOZHOrO yvacTka crabmimsaumm narpesa upu Pr = 0,7 pna rasa. Ioayvens: acu-
MOTOTAYECKNE peilleHnA (MOJIHOCTBI0 DPABBUTHE UPOYUIM CROPOCTH M TeMIepaTyphl) A
IWIMPOKOTO INANA30HA W3MEHEHHS OTHOUIEHMS PaJMycOB KaHAla, Kpurepues PeitHombica u
Hpanaras. Pemenus 0cHOBAHEI HA NOJYYEHHHLIX DKCUEPHMEHTANLHO NPOPUIAX CHOPOCTH M
rypOyiaenrnolt auddysuu. CopaBennnpocTh pelieHuii DOXTBEPIKICHA ONEITHHMHE AAHHBIMH
npu Pr = 0,7, Jlna pemenus sagaun o0 acuMMeTPUYHOM HATPeBe HOBEpXHOCTEH KaHATa
UCHOJNB3OBAH MeTO cyneprnosunuu. IIpuBeleHHEle YKeMepHMeHTATbHEE JRAHHBE 110 ACHM-
METPMUHOMY HATIDEBY XOPOILUO COFNACYIOTCA € TeOPETHYECKUM Y. 3T CTATHA ABIACTCH TPeThelt
B cepun (1, 2) i 3aBepinaer YeTHpexgeTHEE HCCTEHOBAHME TEIIOOOMEHA B KOJIBIEBHX KAHATAX,



